Efficacy of surface error corrections to density functional theory calculations of vacancy formation energy in transition metals.
نویسندگان
چکیده
We calculate properties like equilibrium lattice parameter, bulk modulus and monovacancy formation energy for nickel (Ni), iron (Fe) and chromium (Cr) using Kohn-Sham density functional theory (DFT). We compare the relative performance of local density approximation (LDA) and generalized gradient approximation (GGA) for predicting such physical properties for these metals. We also make a relative study between two different flavors of GGA exchange correlation functional, namely PW91 and PBE. These calculations show that there is a discrepancy between DFT calculations and experimental data. In order to understand this discrepancy in the calculation of vacancy formation energy, we introduce a correction for the surface intrinsic error corresponding to an exchange correlation functional using the scheme implemented by Mattsson et al (2006 Phys. Rev. B 73 195123) and compare the effectiveness of the correction scheme for Al and the 3d transition metals.
منابع مشابه
The simultaneous effect of 3d impurities of transition metals and oxygen vacancy defect on TiO2 anatase and rutile
In this work, the formation of oxygen-vacancy defect in 3d metals-doped TiO2 anatase and rutile structures is first investigated. The systematic calculations of formation energy, crystalline stability, band structure and density of state (DOS) of TiO2 samples of anatase and rutile doped with 3d transition metals with and without oxygen defect is done using FHI-aims as a software package based o...
متن کاملInvestigating the Complexation of a recently synthesized phenothiazine with Different Metals by Density Functional Theory
In this research, the complexation of a new recently synthesized phenothiazine with 10 different metals was evaluated by Density functional theory. At the first step, the structures of 6,15-diazabenzo[a][1,4]benzothiazino[3,2-c]phenothiazine, cations and their complexes with the mentioned material were optimized geometrically. Then, IR calculations were performed on them to obtain the values of...
متن کاملDFT Study on Oxygen-Vacancy Stability in Rutile/Anatase TiO2: Effect of Cationic Substitutions
In this study, a full-potential density functional theory was used to investigate the effects of Ti substitution by different cations. In both rutile and anatase, Ti atom was replaced by Ce, Au, Sn, Ag, Mo, Nb, Zr, and Y. Phase stability, electronic structure and formation energy of oxygen vacancy were compared for rutile and anatase. The results indicated that substitution of Ce and Zr increas...
متن کاملDesign of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study
The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...
متن کاملToward an orbital-free density functional theory of transition metals based on an electron density decomposition
To properly apply approximate kinetic energy density functionals (KEDFs) used in orbital-free density functional theory (OF-DFT) to the highly inhomogeneous electron density in transition metals, we introduce a decomposition scheme in which the electron density is partitioned into delocalized and localized parts, which makes it possible to apply a different physically justifiable KEDF to each d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of physics. Condensed matter : an Institute of Physics journal
دوره 22 34 شماره
صفحات -
تاریخ انتشار 2010